Home
Class 12
MATHS
" The value of "lim(x rarr0)((sin x sin^...

" The value of "lim_(x rarr0)((sin x sin^(-1)x-x^(2))/(x^(6)))" is : "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)[(sin x sin^(-1)x-x^(2))/(x^(6))] equals

The value of lim_(x rarr0)[(x)/(sin x)] is

lim_(x rarr0)(sin x^(2)(1-cos x^(2)))/(x^(6))

lim_(x rarr0)(sin x)^(x) =

lim_(x rarr0)((sin x)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(sin x)^(x)