Home
Class 12
MATHS
" For crove that "cos^(2)theta+sin^(2)th...

" For crove that "cos^(2)theta+sin^(2)theta cos2 beta=cos^(2)beta+sin^(2)beta cos2 theta

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)theta+sin^(2)theta cos2 beta=cos^(2)beta+sin^(2)beta cos2 theta

Prove that : cos^2 theta + sin^2 theta cos 2 beta = cos^2 beta + sin^2 beta cos 2theta

If sin^(-1)x=theta+beta andsin ^(-1)y=theta-beta, then 1+xy is equal to sin^(2)theta+sin^(2)beta(b)sin^(2)theta+cos^(2)beta cos^(2)theta+cos^(2)theta(d)cos^(2)theta+sin^(2)beta

If sin^(-1)x=theta+betaa n dsin^(-1)y=theta-beta, then 1+x y is equal to sin^2theta+sin^2beta (b) sin^2theta+cos^2beta cos^2theta+cos^2theta (d) cos^2theta+sin^2beta

If sin^(-1)x=theta+betaa n dsin^(-1)y=theta-beta, then 1+x y is equal to sin^2theta+sin^2beta (b) sin^2theta+cos^2beta cos^2theta+cos^2theta (d) cos^2theta+sin^2beta

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to

If alpha + beta + gamma = 2 theta , prove that cos theta + cos(theta- alpha) + cos(theta- beta) + cos(theta -gamma) = 4(cos (alpha/2) cos (beta/2) cos (gamma/2))

If sin alpha cos h beta = cos theta and cos alpha sin h beta= sin theta , then prove that sinh^(2)beta= cos^(2)alpha .

It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is sin^(2)(alpha-beta)+2abcos(alpha-beta) equal to ?

If theta is an angle given by cos theta=(cos^(2)alpha+cos^(2)beta+cos^(2)gamma)/(sin^(2)alpha+sin^(2)beta+sin^(2)gamma) where alpha,beta,gamma are the angles made by a line with the axes bar(OX),bar(OY),bar(OZ) respectively then the value of theta is