Home
Class 10
MATHS
28*1/sin A+sec A)^(2)+(cos A+cos(A))^(2)...

28*1/sin A+sec A)^(2)+(cos A+cos(A))^(2)=(1+sec A cosec A)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: (sin A+sec A)^(2)+(cos A+csc A)^(2)=(1+sec A csc A)^(2)cot^(2)A((sec A-1)/(1+sin A))+sec^(2)A((sin A-1)/(1+sec A))=0

Prove that (sec A-1)/(sec A+1)=((sin A)/(1+cos A))^(2)=(cot A-cos ecA)^(2)

(1+tan A)/(sin A)+(1+cot A)/(cos A)=2(sec A+cosec A)

Prove that : (sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A

The value of [(cos^(2)A(sin A+cos A))/(cos ec^(2)A(sin A-cos A)),+(sin^(2)A(sin A-cos A))/(sec^(2)A(sin A+cos A))] (sec^(2)A-cosec^(2)A)

sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A .

Prove that (i) (tan A+ sin A)/(tan A- sin A)= (sec A+1)/(sec A-1) (ii) (cot A- cos A)/(cot A+ cos A)= ("cosec" A-1)/("cosec" A+1)

sin A(1+tan A)+cos A(1+cot A)=sec A+cosec A

(cot^(2)A*sec A)/(cos^(2)A*sin^(2)A)=sec A*cosec^(4)A

Prove that : (sin A - cos A) (1 + tan A + cot A) = (sec A)/ (cosec^(2) A) - (cosec A)/ (sec^(2) A)