Home
Class 12
MATHS
If omega is a complex cube root of unit...

If ` omega` is a complex cube root of unity , then `cos[(omega ^(7) + omega^(11))pi + (pi)/(3)]`

A

3

B

2

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    SIA PUBLICATION|Exercise PHYSICS|12 Videos
  • MEASURES OF DISPERSION AND PROBABILITY

    SIA PUBLICATION|Exercise PROBLEMS|82 Videos
  • MOCK TEST 2

    SIA PUBLICATION|Exercise Chemistry|21 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then sin[(omega^(10)+omega^(23))pi-(pi)/(4)]

If omega is a complex cube root of unity, then (x+1)(x+omega)(x-omega-1)

If omega is a complex cube root unity then sin { (omega^(10) + omega^(23)) pi - (pi)/(4)} equals

If omega is a complex cube root of unity , then (x + 1) ( x + omega) ( x- omega - 1) =

If omega is a complex cube root of unity , then sum_(k = 1)^(6) ( omega^(k) + (1)/(omega^(k)))^(2) =

If omega is a complex cube root of unity and A=[(omega,0),(0, omega)] then A^(100)=

If omega is a complex cube root of unity , then the value of (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) + (a + b omega + comega^(2))/(b + c omega + a omega^(2)) is

If omega is a complex cube root of unity, then 225+(3omega+8omega^(2))^(2)+(3omega^(2)+8omega)^(2)

IF omega is a complex cube root of unity sum_(r=1)^9r(r+1-omega)(r+1-omega^2)=

If omega is complex cube root of unity , the [(51+73 omega+87 omega^2)/(73+ 87 omega+51 omega^2)+(51+73 omega +87 omega^2)/(87+51 omega+73 omega^2)]^15=