Home
Class 12
MATHS
The sum of (n + 1) terms of the series ...

The sum of (n + 1) terms of the series `(C_(0))/(2)-(C_(1))/(3)+(C_(2))/(4).....` is

A

`(1)/(n(n+1))`

B

`(2)/((n+1)(n+2))`

C

`(1)/(n+1)`

D

`(1)/(n+2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    SIA PUBLICATION|Exercise PHYSICS|12 Videos
  • MEASURES OF DISPERSION AND PROBABILITY

    SIA PUBLICATION|Exercise PROBLEMS|82 Videos
  • MOCK TEST 2

    SIA PUBLICATION|Exercise Chemistry|21 Videos

Similar Questions

Explore conceptually related problems

The sum of n terms of the series 1+2 (1 + (1)/(n)) +3 (1+ (1)/(n))^(2) + ….is

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

The sum of n terms of the series 1^(2) - 2^(2) + 3^(2)- 4^(2) + 5^(2) -6^(2) + ….is

Show that (2^(2) *C_(0) )/(1*2)+(2^(3)*C_(1))/(2*3)+(2^(4) *C_(2))/(3*4)+…+(2^(n+2)*C_(n))/((n+1)(n+2)) = (3^(n+2) - 2n-5)/((n+1)(n+2)) Hence deduce that (C_(0))/(1.2) -(C_(1))/(2.3) +(C_(2))/(3.4) -…=(1)/(n+2)

Prove that : If n is a positive integer, then prove that C_(0)+(C_(1))/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1).

Find the sum of the series C_(1)+2^(2) *C_(2)x+3^(2)*C_(3)x^(2)+4^(2)*C_(4)x^(3)+….+n^(2)*C_(n) *x^(n-1) and deduce (n gt 2) the value of C_(1)-2^(2) *C_(2) +3^(2)-C_(3) - …+(-1)^(n-1) *n^(2)*C_(n)

Prove the following: C_(0)+(C_(2))/(3) +(C_(4))/(5) + … = (2^(n))/(n+1)

Find the sum of the following C_(0).C_(3)+C_(1).C_(4)+C_(2).C_(5)+…+C_(n-3).C_(n).