Home
Class 12
MATHS
If 1,z1z2,……z(n-1) are the n^th roots of...

If `1,z_1z_2,……z_(n-1)` are the `n^th` roots of unity, then `(1-z_1)(1-z_2)…..(1-z_(n-1))=`.

A

0

B

`n`

C

8

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EAMCET -2016 (AP)

    SIA PUBLICATION|Exercise PHYSICS|39 Videos
  • EAMCET -2016 (AP)

    SIA PUBLICATION|Exercise CHEMISTRY|3 Videos
  • EAMCET - 2018 (TS) SHIFT - 2

    SIA PUBLICATION|Exercise Chemistry|18 Videos
  • EAMCET -2016 (TS)

    SIA PUBLICATION|Exercise CHEMISTRY|36 Videos

Similar Questions

Explore conceptually related problems

Assertion (A) : The origin and the roots of the equation x^(2) + ax + b = 0 form an equilateral triangle if a^(2) = 3b Reason (R) : If z_(1) , z_(2) , z_(3) are vertices of an equilateral triangle then z_(1)^(2) + z_(2)^(2) + z_(3)^(2) = z_(1) z_(2) + z_(2) z_(3) + z_(3) z_(1)

If |z-1| = 2 then the locus of z is

If z_(1) , z_(2) are two complex numbers satisfying |(z_(1) - 3z_(2))/(3 - z_(1) barz_(2))| = 1 , |z_(1)| ne 3 then |z_(2)|=

If z_(1)=1-2i, z_(2)=1+i and z_(3) =3+4i," then "((1)/(z_(1))+(3)/(z_(2)))(z_(3))/(z_(2))=

If z _(1) =- 1, z _(2) = i, then find Arg ((z _(1))/( z _(2))).

If |z_(1)| = |z_(2)| = |z_(3)| = … |z_(n)| = 1 , then |z_(1) + z_(2) + z_(3) + ….. + z_(n) | =

If z_(1), z_(2) are two non-zero complex numbers satisfying |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , show that Arg z_(1) - Arg z_(2)=0