For three vectors `overline(p),overline(q) and overline ( r) `, if `overline( r) =3 overline(p)+4overline(q) and 2 overline( r) = overline(p) - 3overline(q)` then
A
`|overline( r) | lt 2 |overline( q)| and overline( r) , overline(q)` have the same direction
`|overline ( r)|lt 2 |overline(q)| and overline (r ) , overline(q)` have opposite directions
D
`|overline( r) | gt 2 |overline( q)| and overline ( r) , overline(q)` have same direction
Text Solution
Verified by Experts
The correct Answer is:
B
Topper's Solved these Questions
EAMCET -2016 (AP)
SIA PUBLICATION|Exercise PHYSICS|39 Videos
EAMCET -2016 (AP)
SIA PUBLICATION|Exercise CHEMISTRY|3 Videos
EAMCET - 2018 (TS) SHIFT - 2
SIA PUBLICATION|Exercise Chemistry|18 Videos
EAMCET -2016 (TS)
SIA PUBLICATION|Exercise CHEMISTRY|36 Videos
Similar Questions
Explore conceptually related problems
Measure all the line segments in the figure given below and arrange them in the ascending order of their lengths. Line segments overline(AB) , overline(AC) , overline(AD) , overline(AE) , overline(BC) , overline(BD) , overline(BE) , overline(CD) , overline(CE) , overline(DE)
If overline(a)=2overline(i) +3 overline(j)-5overline(k),overline(b) =m overline(i)+noverline(j)+12overline(k) and overline(a)xxoverline(b)=overline(0) then (m,n)= .
If overline (AB)|\|overline (DC) and overline (CD)|\|overline (EF) then how are overline (AB) , overline (EF) ?
If overline (AB) bot overline (BC) and overline (BC) bot overline (CD) , then how are overline (AB) , overline (CD) ?
Fo any four vectors overlinea,overlineb,overlinec and overlined , prove that (i) (overlineatimesoverlineb)times(overlinectimesoverlined)=[overline(ac)overlined]overlineb-[overlineboverlinecoverlined]overlinea and (ii) (overlineatimesoverlineb)times(overlinectimesoverlined)=[overlineaoverline(bd)]overlinec-[overlineaoverlineboverlinec]overlined
If overline(a),overline(b),overline( c) are non-zero vectors such that (overline(a)xxoverline(b))xxoverline( c) =(1)/(3)|overline(b)||overline( c) |overline(a), overline( c) ⊥ and theta is the angle between the vectors overline(b) , overline( c) then sin theta= .
If |overline(a)|=3,|overline(b)|=4 and the angle between overline(a) and overline (b) is 120^@ , then |4overline(a)+3overline(b)| is equal to