If `a(bar(alpha) xx bar(beta)) + b(bar(beta) xx bar(gamma)) +c(bar(gamma) xx bar(alpha)) = 0` and atleast one of the scalars a, b, c is non-zero, then the vectors `bar(alpha), bar(beta), bar(gamma)` are
A
parallel
B
non coplanar
C
coplanar
D
mutually perpendicular
Text Solution
Verified by Experts
The correct Answer is:
C
Topper's Solved these Questions
EAMCET -2016 (AP)
SIA PUBLICATION|Exercise PHYSICS|39 Videos
EAMCET -2016 (AP)
SIA PUBLICATION|Exercise CHEMISTRY|3 Videos
EAMCET - 2018 (TS) SHIFT - 2
SIA PUBLICATION|Exercise Chemistry|18 Videos
EAMCET -2016 (TS)
SIA PUBLICATION|Exercise CHEMISTRY|36 Videos
Similar Questions
Explore conceptually related problems
Compute bar(a) xx (bar(b) + bar(c )) + bar(b) xx (bar(c ) +bar(a)) + bar(c ) xx (bar(a)+bar(b))
The angle between (bar(A) xx bar(B)) and (bar(B) xx bar(A)) is (in radiant)
If bar(a).bar(b) = bar(a).bar(c ) and bar(a) xx bar(b) = bar(a) xx bar(c ), bar(a) != 0 , then show that bar(b) = bar(c ) .
Show that (bar(a)+bar(b)) . [(bar(b)+bar(c)) xx (bar(c )+bar(a))] = 2[bar(a)bar(b)bar(c )] .
If bar(a)bar(b)bar(c ) and bar(d) are vectors such that bar(a) xx bar(b) = bar(c ) xx bar(d) and bar(a) xx bar(c ) = bar(b)xxbar(d) . Then show that the vectors bar(a) - bar(d) and bar(b) -bar(c ) are parallel.
If |bar(a)|=2, |bar(b)|=3, (bar(a), bar(b))= pi//6 , then find (bar(a) xx bar(b))^(2)
Compute 2 bar(j) xx (3bar(i) - 4bar(k)) + (bar(i)+2bar(j)) xx bar(k) .