Home
Class 12
MATHS
Lt(xto0) (6^x -3^x -2^x +1)/(x^2)=...

`Lt_(xto0) (6^x -3^x -2^x +1)/(x^2)=`

A

`(log_e 2)log_e 3`

B

`log_e 5`

C

`log_e 6`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • EAMCET -2016 (AP)

    SIA PUBLICATION|Exercise PHYSICS|39 Videos
  • EAMCET -2016 (AP)

    SIA PUBLICATION|Exercise CHEMISTRY|3 Videos
  • EAMCET - 2018 (TS) SHIFT - 2

    SIA PUBLICATION|Exercise Chemistry|18 Videos
  • EAMCET -2016 (TS)

    SIA PUBLICATION|Exercise CHEMISTRY|36 Videos

Similar Questions

Explore conceptually related problems

Evaluate Lt_(xto0)(27^(x)-9^(x)-3^(x)+1)/x^(2) .

Lt_(x rarr 0)(6^(x) - 3^(x) - 2^(x)+1)/(x^(2)) =

Evaluate Lt_(xto0)((e^(x^(2))-cosx)/x^(2)) .

Lt_(xto0)((729)^(x)-(243)^(x)-(81)^(x)+9^(x)+3^(x)-1)/x^(3)

Find a, b and c if Lt_(xto0)((ae^(x)-bcosx+ce^(-x))/x^(2))=2

Lt_(xto0)(xcosx-ln(1+x))/x^(2)

Find Lt_(xto1)(2x-1)/(3x^(2)-4x+5)

Evaluate Lt_(xto0)(((1+x)^(1/x)-e+(ex)/2)/(x^(2)))

Lt_(xto0)(2x-log(1+2x))/x^(2)

Find Lt_(xto0)((2+x)^(n)-2^(n))/x