Home
Class 12
MATHS
If omega is a complex cube root of un...

If `omega` is a complex cube root of unity , then for any `n gt 1 underset(r = 1)overset(n - 1) sumr(r + 1 - omega)(r + 1 - omega^(2) ]=`

A

`(n^2(n+1)^2)/4`

B

`(n(n-1))/4(n^2 +3n +4)`

C

`(n(n+1)(2n+1))/4`

D

`(n(n+1)(2n+1))/6`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • EAMCET QUESTION PAPER 2017

    SIA PUBLICATION|Exercise PHYSICS|40 Videos
  • EAMCET QUESTION PAPER 2017

    SIA PUBLICATION|Exercise CHEMISTRY|6 Videos
  • EAMCET -2016 (TS)

    SIA PUBLICATION|Exercise CHEMISTRY|36 Videos
  • EAMCET-2019 (TS) SHIFT-1

    SIA PUBLICATION|Exercise CHEMISTRY|10 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then (x+1)(x+omega)(x-omega-1)

If omega is a complex cube root of unity , then (x + 1) ( x + omega) ( x- omega - 1) =

If 1, omega, omega ^(2) are the cube roots of unity , then w^2=

If omega is a complex cube root of unity , then sum_(k = 1)^(6) ( omega^(k) + (1)/(omega^(k)))^(2) =

If omega is a complex cube root of unity, then sin[(omega^(10)+omega^(23))pi-(pi)/(4)]

If 1 , omega , omega^(2) are the cube roots of unity , then find the values of the following . (1 - omega) ( 1 - omega ^(2)) ( 1 - omega^(4)) ( 1 - omega^(8))

If omega is a complex cube root of unity and A=[(omega,0),(0, omega)] then A^(100)=

If 1 , omega , omega^(2) are the cube roots of unity , then find the values of the following . ( 1+ omega )^(3 ) + ( 1 + omega^(2))^(3)

If omega is a complex cube root of unity , then the value of (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) + (a + b omega + comega^(2))/(b + c omega + a omega^(2)) is