Home
Class 12
MATHS
If alpha is a non-real root of x^(7) = 1...

If `alpha` is a non-real root of `x^(7) = 1` then `alpha(1 + alpha) (1 + alpha^(2) + alpha^(4)) =`

A

2

B

-1

C

1

D

-2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • EAMCET QUESTION PAPER 2017

    SIA PUBLICATION|Exercise PHYSICS|40 Videos
  • EAMCET QUESTION PAPER 2017

    SIA PUBLICATION|Exercise CHEMISTRY|6 Videos
  • EAMCET -2016 (TS)

    SIA PUBLICATION|Exercise CHEMISTRY|36 Videos
  • EAMCET-2019 (TS) SHIFT-1

    SIA PUBLICATION|Exercise CHEMISTRY|10 Videos

Similar Questions

Explore conceptually related problems

If alpha is a non real root of x^6=1 then (alpha^5+alpha^3+alpha+1)/(alpha^2+1)=

If alpha is a non-real root of x^(6)-1=0 then (alpha^(5)+alpha^(3)+alpha+1)/(alpha^(2)+1)

If alpha is a non real root of the equation x^(6)-1=0 then (alpha^(2)+alpha^(3)+alpha^(4)+alpha^(5))/(alpha+1)

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha , beta are the roots of x^2 +x+1=0 then alpha // beta + beta // alpha =

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is