Home
Class 12
MATHS
int(0)^(3)(2+x^(2))dx=...

`int_(0)^(3)(2+x^(2))dx=`

A

`lim_(n to oo) 1/n [ 2n + (1^2 + 2^2 + ...+ (3n)^2)/(n^2)]`

B

`lim_(n to oo) 1/n [ 3n + (1^2 + 2^2 + ...+ 6n^2)/(n^2)]`

C

`lim_(n to oo) 1/n [ 6n + (1^2 + 2^2 + ...+ 9n^2)/(n^2)]`

D

`lim_(n to oo) 1/n [ 3n (1^2 + 2^2 + ...+ 3n^2)/(n^2)]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EAMCET - 2018 (TS) SHIFT - 1

    SIA PUBLICATION|Exercise EXERCISE - Physics|35 Videos
  • EAMCET - 2018 (TS) SHIFT - 1

    SIA PUBLICATION|Exercise EXERCISE - Chemistry|8 Videos
  • DIFFERENTIATION

    SIA PUBLICATION|Exercise Problems|50 Videos
  • EAMCET - 2018 (TS) SHIFT - 2

    SIA PUBLICATION|Exercise Chemistry|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) [x^(2)-1]dx=

If I_(1) = int_(0)^(1) 2^(x^(2))dx, I_(2) = int_(0)^(1) 2^(x^(3))dx , I_(3) = int_(1)^(2) 2^(x^(2))dx, I_(4)=int_(1)^(2) 2^(x^(3))dx then

int_(0)^(2)x^(2)[x]dx=

If int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2)," then " int_(0)^(oo)e^(-ax^(2))dx,agt0 is

int_(-2)^(3) |1-x^(2)|dx=

int_(0)^(2)(3x^(2)+4x+3)dx=

int_(0)^((pi)/(2)) x^(2) sin x dx

int_(0)^(3)[x]dx=

int_(0)^(a)x^(3)(ax-x^(2))^(3//2)dx=