Home
Class 12
MATHS
int(log x)^2dx=...

`int(log x)^2dx`=

A

`x log x -2x log x + c`

B

`x log x + 2x log x + c`

C

`x(log x)^2 - 2x(log x -1) + c`

D

`x(log x)^2 + 2x (log x-1) +c `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EAMCET-2019 (TS) SHIFT-1

    SIA PUBLICATION|Exercise PHYSICS|40 Videos
  • EAMCET-2019 (TS) SHIFT-1

    SIA PUBLICATION|Exercise CHEMISTRY|10 Videos
  • EAMCET QUESTION PAPER 2017

    SIA PUBLICATION|Exercise CHEMISTRY|6 Videos
  • FUNCTIONS AND MATHEMATICAL INDUCTION

    SIA PUBLICATION|Exercise Problems|58 Videos

Similar Questions

Explore conceptually related problems

int sin (log x)dx=

Evaluate the integerals. int (log x)^(2) dx (0, oo).

int (log x)^(5)dx=

int (log x-1)/((log x)^(2))dx=

int (1)/(log x)-(1)/((log x)^(2))dx=

Evaluate the integerals. int (log x)/(x^(2))dx on (0,oo).

Evalute the following integrals int (log x)/(x^(2)) dx

Obtain reduction formula for If I_(n)=int (log x) ^(n)dx, then show that I_(n) =x (log x)^(n) -nI_(n-1), and hence field int (log x) ^(4) dx.

int log x dx=