Home
Class 12
MATHS
lim(n to oo) sum(k=1)^n k/(n^2 + k^2) =...

`lim_(n to oo) sum_(k=1)^n k/(n^2 + k^2)` =

A

`1/2 log 2`

B

2 log 2

C

`1/3` log 2

D

3 log 2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • EAMCET-2019 (TS) SHIFT-1

    SIA PUBLICATION|Exercise PHYSICS|40 Videos
  • EAMCET-2019 (TS) SHIFT-1

    SIA PUBLICATION|Exercise CHEMISTRY|10 Videos
  • EAMCET QUESTION PAPER 2017

    SIA PUBLICATION|Exercise CHEMISTRY|6 Videos
  • FUNCTIONS AND MATHEMATICAL INDUCTION

    SIA PUBLICATION|Exercise Problems|58 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following define integrals as limit of sums : lim_(n rarr oo) sum_(i=1)^(n) (i)/(n^(2)+i^(2))

sum_(k=1)^(2n+1) (-1)^(k-1) k^2 =

Use mathematical induction to prove that statement sum_(k = 1)^(n) (2 K - 1)^(2) = (n (2 n - 1) (2n + 1))/( 3) for all n in N

Lt_(x to oo) (1)/(n^(3)) sum_(k=1)^(n)[k^(2)x]=