Home
Class 11
MATHS
If x,y,z are positive the minimum value ...

If `x,y,z` are positive the minimum value of `(x(1+y)+y(1+2)+z(1+x))/(sqrt(x y)z)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,yand z are positive real numbers,then the minimum value of (x)/(y)+(y)/(z)+(z)/(x) is:

If x,y,z are positive real numbers and x+y+z=1, then minimum value of ((4)/(x)+(9)/(y)+(16)/(z)) is

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y,z<=1, then the minimum value of x(1-z)+y(1-x)+z(1-y) is

If x>0,y>0,z>0 and x+y+z=1 then the minimum value of (x)/(2-x)+(y)/(2-y)+(z)/(2-z) is

For a non-zero positive numbers x,y and z ,the minimum value of (x+y+z)((1)/(x)+(1)/(y)+(1)/(z)) is

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

If x+y+z=1 , then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)^(2) is , where x,y,z inR^(+)