Home
Class 12
MATHS
The circles whose equations are x^(2)+y^...

The circles whose equations are `x^(2)+y^(2)+10x-2y+22=0` and `x^(2)+y^(2)+2x-8y+8=0` touch each other. The circle which touch both circles at, the point of contact and passing through `(0,0)` is,
1) `9(x^(2)+y^(2))-15x-20y=0,` 2) `5(x^(2)+y^(2))-18x-80y=0`
3) `7(x^(2)+y^(2))-18x-80y=0,` 4) `x^(2)+y^(2)-9x-40y=0`]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each other

Prove that the circle x^(2)+y^(2)+2x+2y+1=0 and circle x^(2)+y^(2)-4x-6y-3=0 touch each other.

If the circles x^(2)+y^(2)=9 and x^(2)+y^(2)+8y+C=0 touch each other,then c is equal to

Two circles x^(2) + y^(2) - 2x - 4y = 0 and x^(2) + y^(2) - 8y - 4 = 0

The two circles x^(2)+y^(2)-cx=0 and x^(2)+y^(2)=4 touch each other if:

The circles x^(2)+ y^(2) -6x-2y +9 = 0 and x^(2) + y^(2) =18 are such that they :

If circles x^(2) + y^(2) = 9 " and " x^(2) + y^(2) + 2ax + 2y + 1 = 0 touch each other , then a =