Home
Class 12
MATHS
If x and t are independent variables and...

If x and t are independent variables and `f(x)=(int_0^x e^(x-t)f^(prime)(t)dt)-(x^2-x+1)e^x`, where `f(x)` is a differentiable function, then `f(1/2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and t are independent variables and f(x)=(int_(0)^(x)e^(x-t)f'(t)dt)-(x^(2)-x+1)e^(x), where f(x) is a differentiable function,then f((1)/(2)) equals

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)= int_(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable function and f(g(x)) is differentiable at x=a , then

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=