Home
Class 12
MATHS
lim(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+...

`lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+...+n sqrt(n^(2)+n^(2)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+(-n)/(n sqrt((n^(2)+n^(2))))=

lim _(x to oo) (1)/(n ^(3))(sqrt(n ^(2)+1)+2 sqrt(n ^(2) +2 ^(2))+ .... + n sqrt((n ^(2) + n ^(2)))=:

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n)) is equal to

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals