Home
Class 11
MATHS
bar(a),bar(b),bar(c) represent three con...

`bar(a),bar(b),bar(c)` represent three concurrent edges of a rectangular parallelepiped whose lengths are 4,3 ,2 units respectively then find value of `(bar(a)+bar(b)+bar(c))*(bar(a)timesbar(b)+bar(b)timesbar(c)+bar(c)timesbar(a))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If bar(a)+2bar(b)+3bar(c)=bar(0) then bar(a)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)=

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

If bar(p)=bar(a)+bar(b),bar(q)=bar(a)-bar(b),|bar(a)|=|bar(b)|=r , then |bar(p)timesbar(q)| =

The value of [(bar(a)+2bar(b)-bar(c))(bar(a)-bar(b))(bar(a)-bar(b)-bar(c))] is equal to the box product

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=