Home
Class 12
MATHS
If a square matrix A=[a(ij)](3 times 3) ...

If a square matrix `A=[a_(ij)]_(3 times 3)` where `a_(ij)=i^(2)-j^(2)`, then `|A|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

Consider a square matrix A=[a_(ij)]_(3times3) of order 3, for which a_(ij)=omega^(i^2+j^2) , where omega is an imaginary cube root of unity. What is the value of |A|

Consider a square matrix A=[a_(ij)]_(3times3) of order 3, for which a_(ij)=omega^(i+j) , where omega is an imaginary cube root of unity. What is the value of |A|

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

The square matrix A=[a_(ij)" given by "a_(ij)=(i-j)^3 , is a