Home
Class 13
MATHS
an = (1+1/(n^2))(1+(2^2)/(n^2))^2(1+(3^2...

`a_n = (1+1/(n^2))(1+(2^2)/(n^2))^2(1+(3^2)/(n^2))^3...........(1+(n^2)/(n^2))^n` then `Lim _(n->oo)a_n^(-1/n^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If U_(n)=(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))^(2).............(1+(n^(2))/(n^(2)))^(n) m then lim_(n to oo)(U_(n))^((-4)/(n^(2))) is equal to

a_ (n) = (1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ^ (2) (1+ (3 ^ ( 2)) / (n ^ (2))) ^ (3) ......... (1+ (n ^ (2)) / (n ^ (2))) ^ (n) then lim_ (n rarr oo) a_ (n) ^ (- (1) / (n ^ (2))) is equal to

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_ (n rarr oo) [(1+ (1) / (n ^ (2)))) (1+ (2 ^ (2)) / (n ^ (2))) (1+ (3 ^ (2) ) / (n ^ (2))) ...... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]