Home
Class 11
MATHS
int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x)...

`int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx` is where C is constant of integration

A

`tan^(-1)(f(x)*g(x))+C`

B

`cos^(-1)(f(x)*g(x))+C`

C

`-cot^(-1)(f(x)*g(x))+C`

D

`sec^(-1)(f(x)*g(x))+C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

int(f(x)g'(x)+g(x)f'(x))/(f(x)g(x))[logf(x)+logg(x)]dx=

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int(f^(prime)(x)g(x)-g^(prime)(x)f(x))/((f(x)+g(x))sqrt(f(x)g(x)-g^2(x)))d x=sqrt(m)tan^(- 1)(sqrt((f(x)-g(x))/(ng(x))+C) where m,n in N and 'C' is constant of integration (g(x) > 0). Find the value

If the integral I=inte^(sinx)(cosx.x^(2)+2x)dx=e^(f(x))g(x)+C (where, C is the constant of integration), then the number of solution(s) of f(x)=g(x) is/are

If int(x(sin x-cos x)-sin x)/(e^(x)+(sin x)x)dx=-ln(f(x))+g(x)+C where C is the constant of integration and f(x) is positive then f(x)+g(x) has the value equal to

int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log_(e)(f(x))+g(x)+C where C is the constant of integration and f(x) is positive. Then f(x)+g(x) has the value equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to: