Home
Class 12
MATHS
Let (dy)/(dx) at t=(pi)/(3) for the curv...

Let `(dy)/(dx)` at `t=(pi)/(3)` for the curve `y=cos^(3)t` and `x=sin^(3)t` is `lambda` ; then `|sqrt(3)lambda|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when x=a cos^(3)t and y=as in^(3)t

The area bounded by the curve x=a cos^(3)t,y=a sin^(3)t, is :

Find (dy)/(dx) at t=(2 pi)/(3) when x=10(t sin t) and y=12(1cos t)

The equation of tangent to the curve x=a cos^(3)t ,y=a sin^(3) t at 't' is

If x=a cos^(3)ty=a sin^(3)t then (dy)/(dx)=

If x=a cos^(3)t,y=b sin^(3)t then (dy)/(dx)=

Show that the equation of normal at any point ton the curve x=3cos t-cos^(3)t and y=3sin t-sin^(3)t is 4(y cos^(3)t-x sin^(3)t)=3sin4t

Find (dy)/(dx) if x=(3a t)/(1+t^3) ; y=(3a t^2)/(1+t^3)

Find the equation of the tangent at t=(pi)/(4) to the curve : x=sin 3t, y = cos 2t.