Home
Class 9
MATHS
" 27"x+y=10^(-(1)/(a))xy=16,sqrt(a^(2))x...

" 27"x+y=10^(-(1)/(a))xy=16,sqrt(a^(2))x^(2)-xy+y^(2)" an the "

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin ^ (- 1) x + cos ^ (- 1) y = (tan ^ (- 1) (xy + sqrt ((1-x ^ (2)) (1-y ^ (2)))) ) / (y sqrt (1-x ^ (2)) - x sqrt (1-y ^ (2)))

y=sqrt(1+x^(2)) and y'=(xy)/(1+x^(2))

Find the following products: (4)/(27)xyz((9)/(2)x^(2)yz-(3)/(4)xyz^(2)) 1.5x(10x^(2)y-100xy^(2)) 4.1xy(1.1x-y)250.5xy(xz+(y)/(10))

If y=(sin^(-1)x)/(sqrt(1-x^(2))), then ((1-x^(2))dy)/(dx) is equal to x+y (b) 1+xy1-xy(d)xy-2

if x=(sqrt(10)+sqrt(2))/(2) and y=(sqrt(10)-sqrt(2))/(2) then the value of log_(2)(x^(2)+xy+y^(2))

If y=(sinh^(-1)x)/(sqrt(1+x^(2))) then (1+x^(2))y_(2)+3xy_(1)=

y=(x^(2))/(2)+(1)/(2)x sqrt(x^(2)+1)+ln sqrt(x+sqrt(x^(2)+1)) prove that 2y=xy'+ln y'

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))