Home
Class 9
MATHS
" If "a=(1)/(3-2sqrt(2)),b=(1)/(3+2sqrt(...

" If "a=(1)/(3-2sqrt(2)),b=(1)/(3+2sqrt(2))," prove that "a^(2)b+ab^(2)=6

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=(1)/(3-2sqrt(2)),b=(1)/(3+2sqrt(2)) then the value of a^(2)+b^(2) is

If a=(sqrt(2)+1)/(sqrt(2)-1),b=(sqrt(2)-1)/(sqrt(2)+1), prove that a^(2)+ab+b^(2)=35

(1+sqrt(2))/(3-2sqrt(2))=A sqrt(2)+B

(3-sqrt(6))/(3+2sqrt(6))=a sqrt(6)-b

If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)) , find the value of ((a + b)/(a -b))^(2) .

If 1+4sqrt(3)i=(1+ib)^(2) , prove that: a^(2)-b^(2)=1 and ab=2sqrt(3) .

If a=(sqrt(2)+1)/(sqrt(2)-1)"and"b=(sqrt(2)-1)/(sqrt(2)+1) then value of a^(2)+ab+b^(2) is

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), find the value of a^(2)+ab+b^(2)

if x = (sqrt(3a + 2b) + sqrt(3a - 2b))/(sqrt(3a + 2b) - sqrt(3a - 2b)) prove that : bx^(2) - 3ax + b = 0

The value of a,b,c if [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal are a) a= pm (1)/(sqrt(2)), b = pm (1)/(sqrt(6)) , c = pm (1)/(sqrt(3)) b) a = pm (1)/(sqrt(2)), b = pm (1)/(sqrt(3)), = pm (1)/(sqrt(6)) c) a = pm (1)/(sqrt(6)) , b = pm (1)/(sqrt(2)), c = pm (1)/(sqrt(3)) d) a = pm (1)/(sqrt(3)) , b = pm (1)/(sqrt(2)) , c = pm (1)/(sqrt(6))