Home
Class 12
MATHS
(i)sin^(-1)|x sqrt(1-x)-sqrt(x)sqrt(1-x^...

(i)sin^(-1)|x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))|

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0

Write the following function in the simplest form: sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

If y=sin^(-1)(x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))) and (dy)/(dx)=(1)/(2sqrt(x(1-x)))+p, then p,

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))