Home
Class 11
MATHS
(vi)(1-i)^(4)...

(vi)(1-i)^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .

The value of (1+i)^(4)(1-i)^(4) is

The value of (1+i)^(4)(1-i)^(4) is

(1+i)^(4)+(1-i)^(4)=

(1+i)^(4)+(1-i)^(4) = ........ .

The value of (1+i)^(4)+(1-i)^(4) is

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=(A)1(B)2(C)3(D)4

Simplify each of the following and express it in the form a + ib : {:((i),2(3+4i)+i(5-6i),(ii),(3+sqrt(-16))-(4-sqrt(-9))),((iii),(-5+6i)-(2+i),(iv),(8-4i)-(-3+5i)),((v),(1-i)^(2)(1+i)-(3-4i)^(2),(vi),(5+sqrt(-3))(5-sqrt(-3))),((vii),(3+4i)(2-3i),(viii),(-2+sqrt(-3))(-3+2 sqrt(-3))):}