Home
Class 12
MATHS
Discuss the continuity of the function f...

Discuss the continuity of the function `f(x){(a^2[x]+{x}-1)/(2[x]+{x}), x != 0 log_e a,x=0 at x=0.` denotes greatest integral part and {*} denotes fractional part function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve 1/[x]+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

Solve 1/([x])+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

Solve 1/[x]+1/([2x])= {x}+1/3where [.] denotes the greatest integers function and{.} denotes fractional part function.

Solve (1)/(x)+(1)/([2x])={x}+(1)/(3) where [.] denotes the greatest integers function and {.} denotes fractional part function.

f(x) = [x-1] + {x)^{x}, x in (1,3), then f^-1(x) is- (where [.] denotes greatest integer function and (J denotes fractional part function)