Home
Class 12
MATHS
If f(x)=lim(n->oo)(tanpix^2+(x+1)^nsinx)...

If `f(x)=lim_(n->oo)(tanpix^2+(x+1)^nsinx)/(x^2+(x+1)^n)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)), find lim_(x rarr0)f(x)

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a)-1 (b). 1 ( c.) 0 (d).2

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a) -1 (b). 1 ( c.) 0 (d). 2

lim_(x->oo)(1-x+x.e^(1/n))^n

Let f(x)=(lim)_(n->oo)(2x^(2n)sin1/x+x)/(1+x^(2n))\ then find :\ (lim)_(x->-oo)f(x)

If phi(x)=lim_(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the following is correct

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

Let f(x)=lim_(n->oo)(2x^(2n)sin(1/x)+x)/(1+x^(2n)) then find (a) lim_(x->oo) xf(x) (b) lim_(x->1) f(x) (c) lim_(x->0) f(x) (d) lim_(x->-oo) f(x)

Let f(x)=lim_(n rarr oo)(2x^(2n)sin\ 1/x+x)/(1+x^(2n)) then find (a) lim_(x rarr oo) x f(x) (b) lim_(x rarr 1) f(x)