Home
Class 12
MATHS
Suppose the function f satisfies the con...

Suppose the function f satisfies the conditions `f(x + y) = f(x) f(y) AA x,y and f(x) = 1 + x g(x).` where `Lt_(x->0) g(x)=1.` show that `f prime(x)` exists and `f(x) =f(x) AA x.`

Promotional Banner

Similar Questions

Explore conceptually related problems

A function satisfies the conditions f(x+y)=f(x) + f(y), AA x, y in R then f is

If f(x + y) = f(x)f(y) for all x, y and and f(x) = 1 + x g(x), where lim_(xrarr0)g(x)=1 ) , show that f'(x) = f(x).

If f(x+y)=f(x)f(y) for all x, y and f(x)=1+xg(x) , where lim_(xto0)g(x)=1 . Show that f'(x)=f(x) .

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=