Home
Class 12
MATHS
Let f : R -> R and g : R -> R be contin...

Let `f : R -> R` and `g : R -> R` be continuous functions. Then the value of the integral `int_(pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R to R and g: R to R be continuous function. Then the value of the integral int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dxi s (a) pi (b) 1 (c) -1 (d) 0

Let f: RvecR a n d g: RvecR be continuous function. Then the value of the integral int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)] dx is

Let f:R rarr and g:R rarr R be continuous function.Then the value of the integral int_(-(pi)/(2))^((pi)/(2))[f(x)+f(-x)][g(x)-g(-x)]dx is pi (b) 1(c)-1(d)0

Let f : R to R and g : R to R be continuous functions. Then the value of : int_(-pi//2)^(pi//2) [f (x) + f(-x)][g(x) - g(-x)]dx is :

Let f:RtoR and g:R toR be continuous functions. Then the value of int_(-pi//2)^(pi//2)(f(x)+f(-x))(g(x)-g(-x))dx is

If f: R rarr R and g:R rarr R are one-to-one, real valued functions, then the value of the integral int_(-pi)^(pi) [f(x)+f(-x)][g(x)-g(-x)]dx =