Home
Class
MATHS
(dn)/(n^(3)-1)...

(dn)/(n^(3)-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

int(n^(4))/((n-1)(n^(2)+1))dn

Q.prove that int(e^(n+(1)/(n))+n(1-(1)/(n^(2)))*e^(n+(1)/(n)))dn=n*e^(n+(1)/(n))+C

int sqrt((1-n)/(1+n))dn

int(n)/(sqrt(n-3))dn

I=int(n^2dn)/(sqrt(a^(3)-n^(3)))

If (n^(2)-1) be one of the factors of the polynomial f(n)=an^(4)+bn^(3)+cn^(2)+dn+e , then

The total number of terms which are dependent on the value of x in the expansion of (x^(2)-2+(1)/(x^(2)))^(n) is equal to 2n+1 b.2n c.n d.n+1

If A and B are square matrices of the same order and A is non-singular,then for a positive integer n,(A^(-1)BA)^(n) is equal to A^(-n)B^(n)A^(n) b.A^(n)B^(n)A^(-n) c.A^(-1)B^(n)A d.n(A^(-1)BA)

int_ (2) ^ (3) (n) / (1 + n ^ (2)) dn

Statement 1: if D= diag [d_1, d_2, ,d_n] ,then D^(-1)= diag [d_1^(-1),d_2^(-1),...,d_n^(-1)] Statement 2: if D= diag [d_1, d_2, ,d_n] ,then D^n= diag [d_1^n,d_2^n,...,d_n^n]