Home
Class 12
MATHS
Let f (x) ={pi-|x|,|x| < pi, pisinx|,| a...

Let `f (x) ={pi-|x|,|x| < pi, pisinx|,|` and `g(x){1, -pi/2 < x < pi/2, 2, pi/2 < x < pi` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = |x|+|sin x|, x in (-pi/2, (3pi)/2) . Then, f is :

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x)=|x|+|sinx|, x in (-pi/ 2,3pi/2). Then , f is

Let f(x)=x sin pi x,x>0 Then for all natural numbers n,f(x) vanishes at

Let f(x)=cos(pi(|x|+2[x])) where [.] represents greatest integer function,then then (1) f(x) is neither odd nor even (2)f(x) is non periodic function ( 3 ) Range of f(x) is [-1,1] (4) f(x)=|f(x)| for all x .

Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin {pi[x-pi]})/(1+[x^(2)]) , where [.] stands for the greatest integer function. Then, f(x) is continuous or not?