Home
Class 12
MATHS
" (i) "|[bc,a,a^(2)],[ca,b,b^(2)],[ab,c,...

" (i) "|[bc,a,a^(2)],[ca,b,b^(2)],[ab,c,c^(2)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the determinant |(bc,a,a^(2)),(ca,b,b^(2)),(ab,c,c^(2))| equal to ?

Prove without expanding that |[bc,a,a^2],[ca,b,b^2],[ab,c,c^2]|=|[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|

Using properties of determinant show that : |(bc,a,a^2),(ca,b,b^2),(ab,c,c^2)|=(b-c)(c-a)(a-b)(ab+bc+ca)

Without expanding show that : |(bc,a,a^2),(ca,b,b^2),(ab,c,c^2)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Without expanding prove abs((bc, a, a^2),(ca, b, b^2),(ab, c, c^2))=abs((1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3))

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a) .

|(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

det[[bc-a^(2),ca-b^(2),ab-c^(2)ca-b^(2),ab-c^(2),bc-a^(2)ab-c^(2),bc-a^(2),ca-b^(2)]]=det[[a,b,cb,c,ac,a,b]]^(2)