Home
Class 12
MATHS
lim(x rarr oo)(int(0)^(x)(tan^(-1)t)^(2)...

lim_(x rarr oo)(int_(0)^(x)(tan^(-1)t)^(2)dt)/(sqrt(x^(2)+1))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)(int_(0)^(x)(tan^(-1)x)^(2))/(sqrt(x^(2)+1))dx

The value of limit lim_(t rarr oo)(int_(0)^(1)(tan^(-1)x)^(2)dx)/(sqrt(t^(2)+1))

the value of lim_(x rarr oo)(int_(0rarr x)(tan^(-1)x)^(2)dx)/(sqrt(x^(2)+1))

lim_(xto oo) (int_(0)^(x)(tan^(-1)t)^2dt)/(sqrt(x^(2)+1)) has the value a)zero (b) pi/4 (c) 1 (d) (pi^2)/4

lim_(x rarr oo)int_(0)^(x)xe^(t^(2)-x^(2))dt

(lim_(x rarr oo)int_(0)^(x)(tan^(-1)t)^(2)dt)/( (d) (pi^(2))/(4)) has the value zero (b) (pi)/(4)(c)1

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to