Home
Class 12
MATHS
" If "y=sin^(-1)((x)/(sqrt(1+x^(2))))+co...

" If "y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2)))),0

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), Find dy/dx

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), where 0 < x < oo Find dy/dx

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

If tan^(-1)x+cos^(-1)((y)/(sqrt(1+y^(2))))=sin^(-1)((3)/(sqrt(10))) , then

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

If x takes negative permissible values , then sin^(-1) x= a) cos^(-1)sqrt(1-x^2) b) -cos^(-1)sqrt(1-x^2) c) cos^(-1)sqrt(x^2-1) d) pi-cos^(-1)sqrt(1-x^2)

d/(dx)(sin^(-1)x+cos^(-1)x) is equal to : (A) (1)/(sqrt(1-x^(2))), (B) (2)/(sqrt(1-x^(2))), (C) 0 (D) sqrt(1-x^(2))

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))