Home
Class 12
MATHS
If log2 sin x - log2 cos x - log2 (1 - t...

If `log_2 sin x - log_2 cos x - log_2 (1 - tan^2x) = -1`, then `x =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

If log_(2)sinx-log_(2)cosx-log_(2)(1-tan^(2)x)=-1 then x =

If log_2(sinx)-log_2(cos x)-log_2(1-tan x)-log_2(1+ tan x)=-1 then tan 2x =

log_(2)sin x-log_(2)cos x-log_(2)(1-tan x)-log_(2)(1+tan x)=-1

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

lf_(log_(2)(3sin x)-log_(2)(cos x)-log_(2)(1-tan x)-log_(2)(1+tan x)=1) then tan x=

Determine x if log_2 (log_2 x)=1

Solve for x. log_(0.1) sin 2x +log_10 cos x = log_10 7 .