Home
Class 12
MATHS
Find sum of sin2alpha+sin3alpha+.......+...

Find sum of `sin2alpha+sin3alpha+.......+sinnalpha`, where `(n+2)alpha = 2 pi`

Text Solution

Verified by Experts

The correct Answer is:
`0`

`sum_(k=0)^(n-1)sin((2kpi)/h)=0`
`sin0+sin((2x)/h)+sin((4pi)/h)+...+sin((2(n-1))/npi)=0`
`alpha=(2pi)/(n+2)`
`sin2*(2pi)/(n+2)+sin3*(2pi)/(n+2)+...+sin n*(2pi)/(n+2)`
`sum_(k=0)^(n+1)sin((2kpi)/(n+2))=0`
`sin0+sin((2pi)/(n+2))+sin((4pi)/(n+2))+sin((6pi)/(n+2))+...+sin((2npi)/(n+2))+sin((2(n+2)pi)/(n+2))=0`
`f+sin(2pi)/(n+2)+sin((2(n+1)pi)/2)=0`
`sin((2(n+2-1)pi)/(n+2))`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : sum_(r=2)^n sinr alpha , where (n+2)alpha =2 pi

Solve: sin3 alpha=4sin alpha sin(x+alpha)sin(x-alpha), where alpha!=n pi,n in Z

Solve sin 3alpha=4 sin alpha sin (x+alpha)sin(x-alpha) where alpha=n pi,n in Z .

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I

If sinalpha, sin^2alpha, 1 , sin^4alpha and sin^6alpha are in A.P., where -pi < alpha < pi, then alpha lies in the interval

Sum the series: sin alpha - sin 2alpha + sin 3alpha - sin 4alpha + ... to n terms.

Find the sum of the series sinalpha+sin(alpha+beta)+sin(alpha+2beta)+sin(alpha+3beta)+.....+sin(alpha+(n-1)beta)