Home
Class 9
MATHS
P(x)=3x^(4)-6x^(2)-8x-2quad g(x)=x-2...

P(x)=3x^(4)-6x^(2)-8x-2quad g(x)=x-2

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=3x^(4)-6x^(2)+8x-2,g(x)=x-2 .

In each of the following cases, use factor theorem to find whether g(x) is a factor of the polynomial p(x) or not. p(x)= x^(3)-3x^(2)+6x-20 g(x)= x-2

If p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (x)/(3)-(1)/(4) then check whether g (x) is a factor of p(x) or not.

Find the quotient and remainder on dividing p(x) by g(x) in each of the following cases, without actual division : p(x)= x^(3)+4x^(2)-6x+2, g(x)= x-3

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=x^(3)-2x^(2)-8x-1,g(x)=x+1 .

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+x^(3)-8x^(2)-x+6,g(x)=2x-3

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=x^(3)-6x^(2)+2x-4,g(x)=1-(3)/(2)x .