Home
Class 12
MATHS
" (ii) "y=e^(2x)*tan x...

" (ii) "y=e^(2x)*tan x

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= e^(2x) tan x ,then ( d^(2)y)/(dx^(2))=

If y=e^(2x)tan^(-1)2x,"then " dy/dx=

If y = log [ sece^(x^(2)) ] then (dy)/(dx) = (a) 2xe^(x^(2))(tan e^(x^(2))) (b) 2xe^(x^(2))(sec x^(2))(tan e^(x^(2))) (c) x^(2)e^(x^(2))tan e^(x^(2)) (d) e^(x^(2))tan e^(x^(2))

Differentiate the following with respect to x. y = x^(2)e^(3x)tan^(-1)x

Find the derivative of the following functions w.r.t.x: y=sin 2x + e^(-3x)-tan^-1 5x

2.The equation of the curve passing through the point (1 (pi)/(4)) and having slope of tangent at any point (x y) as (y)/(x)-cos^(2)(y)/(x) is 1) x=e^(1-tan(y/x)) 2) x=e^((1+tan(y/x)) 3) x=1-tan(y/x)4)y=e^(1-cot((y)/(x)))

2.The equation of the curve passing through the point (1 (pi)/(4)) and having slope of tangent at any point (x ,y) as (y)/(x)-cos^(2)((y)/(x)) is 1) x=e^(1-tan(y/x)) 2) x=e^(1+tan(y/x)) 3) x=1-tan(y/x) 4) y=e^(1-cot((y)/(x)))

The solution of e^(x) tan y dx + (1- e^(x)) sec^(2) y dy = 0 is

Find the general solution of e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0

Solve the differential equation e^(x) tan y dx + (1-e^(x))sec^(2) y dy = 0