Home
Class 12
MATHS
" The value of the "lim(x rarr a)(log x-...

" The value of the "lim_(x rarr a)(log x-log a)/(x-a)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr a)(log x-log a)/(x-a)

lim_(x rarr0)x log x .

lim_(x rarr oo)x(log(x+1)-log x)=

Lim_(x rarre)(log x-1)/(x-e)=

lim_(h rarr0)(log(x+h)-log x)/(h)

The value of lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a))) is

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

lim_(x rarr oo)(x-log x)/(x+log x)

lim_(x rarr1)(log x)/(x-1)=

lim_(x rarr0)[(log(a+x)-log a)/(x)]=...