Home
Class 12
MATHS
If sum(i=1)^10(xi-15)= 12 and sum(i=1)^1...

If `sum_(i=1)^10(x_i-15)= 12` and `sum_(i=1)^10(x-15)^2=18` then the S.D. of observation `x_1,x_2,x_3,.....x_(10)` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then the standard deviation of x_(1),x_(2),...,x_(18) is

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then find the standard deviation of x_1 , x_2, ....,x_(18)

If n=10 , sum_(i=1)^(10) x_(i)=60 and sum_(i=1)^(10) x_(i)^(2)=1000 then find s.d

For observations x_i given sum_(i=1)^10 (X_i - 5) = 10 and sum_(i=1)^10 (X_i - 5)^2 = 40 If mean and variance of observations (x_1 - 3),(x_2 - 3),(x_3 - 3).........(x_10 - 3) is lambda & mu respectively then ordered pair (lambda, mu) is

If sum_(i=1)^9 (x_i - 5) = 9 and sum_(i=1)^9 (x_i - 5)^2 = 45. The standard deviation of the observations x_1, x_2,………,x_9 is ………….

STATEMENT-1: If sum_(i=1)^(9)(x_(i)-8)=9 and sum_(i=1)^(9)(x_(i)-8)^(2)=45 then s.D.~ of~ x_(1),x_(2),.....,x_(9), is 2. STATEMENT- 2: S.D.is independent of change of origin.

If sum_(i=1)^n(x_i+1)^2=9n and sum_(i=1)^n(x_i-1)^2=5n , then standard deviation of these 'n' observations (x_1) is: (1) 2sqrt(3) (2) sqrt(3) (3) sqrt(5) (4) 3sqrt(2)

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.