Home
Class 10
MATHS
Prove that cos^4A+sin^4A+2sin^2Acos^2A=1...

Prove that `cos^4A+sin^4A+2sin^2Acos^2A=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC , Prove that sin^4A+sin^4B+ sin^4C=3/2+2cosAcosBcosC+1/2cos2Acos2Bcos2C

If (cos^4 A)/(cos^2 B) + (sin^4 A)/(sin^2 B) =1 , Prove that: sin^4 A+sin^4 B=2 sin^2 A sin^2 B

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 then prove that (i)sin^4A+sin^4B=2sin^2Asin^2B (ii)(cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 , then prove that (i) sin^4A+sin^4B=2 sin^2Asin^2B (ii) (cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 , then prove that (i) sin^4A+sin^4B=2 sin^2Asin^2B (ii) (cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

Prove that cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A .

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove that: sin2A+2sin4A+sin6A=4cos^(2)A.sin4A