Home
Class 12
MATHS
(dy)/(dx)+(y)/(x)log y=(y(log y)^(2))/(x...

(dy)/(dx)+(y)/(x)log y=(y(log y)^(2))/(x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

solve (dy) / (dx) + (y) / (x) * log y = (y) / (x ^ (2)) (log y) ^ (2)

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

Solve (dy)/(dx)=(y)/(2y log y+y-x).