Home
Class 11
MATHS
If X={4^n-3n-1 ; n epsilonN}&Y={9(n-1):n...

If `X={4^n-3n-1 ; n epsilonN}&Y={9(n-1):n epsilonN}` Prove that `XsubY`

Promotional Banner

Similar Questions

Explore conceptually related problems

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If ={4^(n)-3n-1:n varepsilon N}&Y={9(n-1):n varepsilon N} ,then precisely

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If A={4^(n)-3n-1:n in N) and B={9(n-1):n in N} then

If X={8^(n)-7n-1,n in N} and Y={49(n-1);n in N}, then prove that X is a subset of Y