Home
Class 11
MATHS
a^(2)+b^(2)+c^(2)=0,((a^(4)-b^(4))^(3)+(...

a^(2)+b^(2)+c^(2)=0,((a^(4)-b^(4))^(3)+(b^(4)-c^(4))^(3)+(c^(4)-a^(4))^(3))/((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)+ b^(2) + c^(2)=0 , then what is ((a^(4)-b^(4))^(3)+(b^(4)-c^(4))^(3)+(c^(4)-a^(4))^(3))/((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)) equal to?

|(3, a+b+c, a^(2)+b^(2)+c^(2)),(a+b+c, a^(2)+b^(2)+c^(2), a^(3)+b^(3)+c^(3)), (a^(2)+b^(2)+c^(2),a^(3)+b^(3)+c^(3), a^(4)+b^(4) +c^(4))| =K(a-b)^(2)(b-c)^(2)(c-a)^(2) then k =

The rationalising factor of root(7)(a^(4)b^(3)c^(5)) is (a) root(7)(a^(3)b^(4)c^(2)) (b) root(7)(a^(3)b^(4)c^(2)) (c) root(7)(a^(2)b^(3)c^(3)) (d) root(7)(a^(2)b^(4)c^(3))

a^(2)+b^(2)+4c^(2)=2a+2b-4c+3=0

(2a-3b)^(3)+(4c-2a)^(3)+(3b-4c)^(3)

(a^(2))/(2) + (b^(3))/(3) - (3c^(3))/(4) + (a^(2))/(3) - (3b^(3))/(4) + (c^(2))/(2) - (3a^(2))/(4) + (b^(3))/(2) + (c^(3))/(3) = "______"

Factorize the following 3,a+b+c,a^(3)+b^(3)+c^(3)a+b+c,a^(2)+b^(2)+c^(2),a^(4)+b^(4)+c^(4)a^(2)+b^(2)+c^(2),a^(3)+b^(3)+c^(3),a^(5)+b^(5)+c^(5)]|

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1