Home
Class 11
MATHS
prove that cos^3(2x)+3cos2x=4(cos^6x-si...

prove that `cos^3(2x)+3cos2x=4(cos^6x-sin^6x)`

Text Solution

Verified by Experts

`L.H.S. = cos^3(2x) +3cos2x`
`=cos2x(cos^2 (2x) +3)`
`=cos2x((2cos^2x-1)^2 +3)`
`=cos2x((4cos^4x+1 - 4cos^2x) +3)`
`=cos2x(4cos^4x+4 - 4cos^2x)`
`=4(2cos^2x -1)(cos^4x+1 - cos^2x)`
`=4(2cos^6x + 2cos^2x -2cos^4x - cos^4x- 1 + cos^2x)`
`=4(2cos^6x-3cos^4x+3cos^2x-1)`
...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that cos^(2)2x-cos^(2)6x=sin4xsin8x

Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x

Prove that cos^2 2x-cos^2 6x=sin4x sin8x

Prove that: cos^2 2x-cos^2 6x=sin4xsin8x

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x

Prove that cos^(2)2x-cos^(2)6x=sin4x.sin8x ?

Prove that cos6x=32cos^6x-48cos^4x+18cos^2x-1

Prove that: cos6x=32cos^6x-48cos^4x+18cos^2x-1

Prove the following cos^(2)2x-cos^(2)6x="sin"4x"sin"8x

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x