Home
Class 9
MATHS
" (iii) "(3a-7b-c)^(2)...

" (iii) "(3a-7b-c)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Expand each of the following, using suitable identities : (i) (x+2y+4z)^(2) (ii) (2x-y+z)^(2) (iii) (-2x+3y+2z)^(2) (iv) (3a-7b-c)^(2) (v) (-2x+5y-3z)^(2) (vi) [(1)/(4)a-(1)/(2)b+1]^(2)

Expand each of the following, using suitable identities: (i) (x+2y+4z)^2 (ii) (2x-y+z)^2 (iii) (-2x+3y+2z)^2 (iv) (3a-7b-c)^2 (v) (-2x+5y-3z)^2 (vi) [1/4a-1/2b+1]^2

Expand each of the following, using suitable identities: (i) (x+2y+4z)^2 (ii) (2x-y+z)^2 (iii) (-2x+3y+2z)^2 (iv) (3a-7b-c)^2 (v) (-2x+5y-3z)^2 (vi) [1/4a-1/2b+1]^2

Expand each of the following , using suitable identities : (i) (x+2y+4z)^2 (ii) (2x-y+z)^2 (iii) (-2x+3y+2z)^2 (iv) (3a-7b-c)^2 (v) (-2x+5y-3z)^2 (vi) (1/4a-1/2b+1)^2

Expand each of the following , using suitable identities. (3a-7b-c)^(2)

Expand each of the following using suitable identities : (3a-7b-c)^(2)

Expand the following using suitable Identities : (3a-7b-c)^2 .

Let in a triangle ABC sides opposite to vertices A B&C be a b&c then there exists a triangle satisfying (1) tan A+tan B+tan C=0 (2) (sin A)/(2)=(sin B)/(3)=(sin C)/(7) (3) (a+b)^(2)=c^(2)+ab (4) Not possible

Let in a triangle ABC sides opposite to vertices A B&C be a, b, & c then there exists a triangle satisfying (A) tan A+tan B+tan C=0 (B) (sin A)/(2)=(sin B)/(3)=(sin C)/(7) (C) (a+b)^(2)=c^(2)+ab (D) Not possible