Home
Class 12
MATHS
sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5...

`sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5pi)/8 + sin^4\ (7pi)/8=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: sin^2 pi/8 + sin^2 (3pi)/8+sin^2 (5pi)/8+sin^2 (7pi)/8=2

prove that "sin"^4pi/8+"sin"^4(3pi)/8+"sin"^4(5pi)/8+"sin"^4 (7pi)/8=3/2

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II sin^4pi/8+sin^4 (3pi)/8+sin^4(5pi)/8sin^4(7pi)/8=3/2

The value of sin^2 (pi/8)+sin^2 ((3pi)/8)+sin^2 ((5pi)/8)+sin^2 ((7pi)/8) is

sin^4(pi/8)+sin^4((2pi)/8)+sin^4((3pi)/8)+sin^4((4pi)/8)+sin^4((5pi)/8)+sin^4((6pi)/8)+sin^4((7pi)/8)=

"sin"^(2)pi/8" + sin"^(2)(3pi)/8" + sin"^(2)(5pi)/8" + sin"^(2)(7pi)/8=

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that: sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/8+sin^(2)(7pi)/8=2