Home
Class 10
MATHS
Prove that 1/(1+tan^2 theta)+1/(1+cot^2 ...

Prove that `1/(1+tan^2 theta)+1/(1+cot^2 theta)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 1/(1+tan^2theta)+1/(1+cot^2theta) =1

Prove that (1+tan^2 theta)/(1+cot^2 theta)=((1-tantheta)/(1-cottheta))^2 .

Prove that (1-tan^2theta)/(cot^2theta-1)=tan^2theta,thetane45^@ .

Prove that : (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta

Prove that : (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta

Prove the following (1+tan^2theta) /(1+cot^2theta) =((1+tantheta) /(1+cottheta))^2 =tan^2theta

prove that 1+((1-tan theta)/(1-cot theta))^(2)=sec^(2)theta

Prove that (1+tan theta )^2 + (1+cot theta)^2 = (sec theta + cosec theta)^2

Prove that (tan^(3) theta)/(1 + tan^(2) theta) + (cot^(3) theta)/(1+ cot^(2) theta) = sec theta cosec theta - 2 sin theta cos theta

Prove that (tan theta)/(1-cot theta)+(cot theta)/(1-tan theta)=1+sec theta+tan theta